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Abstract

A two-dimensional inverse heat conduction problem is solved successfully by the conjugate gradient method
(CGM) of minimization in imaging the unknown thermal conductivity of a non-homogeneous material. This

technique can readily be applied to medical optical tomography problem. It is assumed that no prior information is
available on the functional form of the unknown thermal conductivity in the present study, thus, it is classi®ed as
the function estimation in inverse calculation. The accuracy of the inverse analysis is examined by using simulated

exact and inexact measurements obtained on the medium surface. The advantages of applying the CGM in the
present inverse analysis lie in that the initial guesses of the unknown thermal conductivity can be chosen arbitrarily
and the rate of convergence is fast. Results show that an excellent estimation on the thermal conductivity can be

obtained within a couple of minutes CPU time at Pentium II-350 MHz PC. Finally the exact and estimated images
of the thermal conductivity will be presented. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

A two-dimensional inverse heat conduction problem

(IHCP) is examined in the present study by the conju-

gate gradient method to estimate the thermal conduc-

tivity of a non-homogeneous medium. In addition,

temperature readings using infrared scanners taken at

some appropriate locations and time on the medium

surface are also considered available.

Numerous engineering and mathematical researchers

have considered problems equivalent to estimating the

thermal conductivity. For instance, Huang and Ozisik

[1,2] used direct integration and Levenberg±Marquardt

methods to estimate thermal conductivity and heat ca-

pacity simultaneously; Beck and Al-Araji [3] deter-
mined the constant thermal conductivity, heat capacity
and contact conductance at one time; Terrola [4] used

Davidon±Fletcher±Powell method to determine tem-
perature-dependent thermal conductivity. All the
above references belong to parameter estimations, i.e.,
the functional form for the unknown quantities should

be assigned before the inverse calculations. However,
when the thermal conductivity of a non-homogeneous
or composite material is to be estimated, then from

parameter estimation, it is di�cult to achieve the goal,
especially for multi-dimensional problems. Thus, func-
tion estimation with conjugate gradient method

(CGM) [5] should be used in this inverse heat conduc-
tion problem to estimate the unknown thermal conduc-
tivity.

Recently, Huang and Yuan have developed an ef-
®cient function estimation algorithm based on the
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CGM in determining the thermal properties of the ma-
terial in one-dimensional inverse problems. For
example, Huang and Yuan [6] used the CGM in esti-

mating temperature-dependent thermal conductivity.
Huang and Yuan [7] used the same technique to esti-
mate the temperature-dependent heat capacity per unit

volume. Finally, Huang and Yuan [8] determined sim-
ultaneously the temperature-dependent thermal con-
ductivity and heat capacity per unit volume.

The estimation of the thermal properties for the
multi-dimensional problems is very limited in the lit-
erature. The purpose of the present study is to extend

our previous algorithm to a two-dimensional IHCP to
estimate the spatial and time-varying thermal conduc-
tivity in a non-homogeneous medium.
The CGM derives basis from the perturbation prin-

ciple [5] and transforms the direct problem to the sol-
ution of two other related problems in the inverse
analysis, namely, the sensitivity problem and the

adjoint problem, which will be discussed in details in
text.
Once this technique is established, it can also be

applied to many applications in estimating the di�u-
sion coe�cients, such as the medical optical tomogra-
phy problem [9,10], since the governing equations for
those ®elds are very similar or even identical (for

example in Ref. [10]) to the present study.

2. Direct problem

To illustrate the methodology of the present two-
dimensional IHCP in determining unknown spatial
and time varying thermal conductivity k�x, y, t� in a

non-homogeneous medium, we consider the following
transient heat conduction problem.
A square plane O with side length �L is initially at

temperature �T� �x, �y, 0� � �T0: For time �t > 0, the
boundary surfaces along �x � 0 and �y � 0 are subjected
to a prescribed constant heat ¯ux �q1 and �q3, respect-

ively, while along boundary surfaces �x � �L and �y � �L,
a constant heat ¯ux �q2 and �q4 are taken away from the
boundary by cooling, respectively. Fig. 1 shows the

geometry and the coordinates for the two-dimensional
physical problem considered here. The mathematical
formulation of this transient heat conduction problem

in dimensionless form is given as follows :

Nomenclature

J functional de®ned by Eq. (2)
J ' gradient of functional de®ned by Eq.

(11)

k�x, y, t� unknown thermal conductivity
P direction of descent de®ned by Eq. (3b)
T�x, y, t� estimated dimensionless temperature

DT�x, y, t� sensitivity function de®ned by Eqs.
(4a)±(4f)

Y�x, y, t� measured temperature

Greek symbols
b search step size
g conjugate coe�cient

l�x, y, t� Lagrange multiplier de®ned by Eqs.
(9a)±(9f)

d��� Dirac delta function

o random number
e convergence criteria

Superscripts
^ estimated values
� dimensional parameters

n iteration index

Subscript
r reference parameters

Fig. 1. Physical problem.
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�
k�x, y, t�@T�x, y, t�

@x

�

� @

@y

�
k�x, y, t�@T�x, y, t�

@y

�

� @T�x, y, t�
@ t

in O

�1a�

ÿk�x, y, t�@T�x, y, t�
@x

� q1 along x � 0 �1b�

ÿk�x, y, t�@T�x, y, t�
@x

� q3 along x � L �1c�

ÿk�x, y, t�@T�x, y, t�
@y

� q2 along y � 0 �1d�

ÿk�x, y, t�@T�x, y, t�
@y

� q4 along y � L �1e�

T�x, y, t� � 0 at t � 0 �1f�

where the following dimensionless quantities were
de®ned

x � �x
�Lr

, y � �y
�Lr

, T �
�Tÿ �T0

�Tr

, k �
�k
�kr
, q �

�L
�kr �Tr

�q,

t �
�kr

�r �Cp
�L
2

r

�t

where the superscript denotes the dimensional quan-
tities; �r �Cp is the heat capacity per unit volume and �Tr

and �kr refer to the non-zero reference temperature and
thermal conductivity, respectively. �Lr represents the
reference length.
The direct problem considered here is concerned

with the determination of the medium temperatures
when the thermal conductivity k�x, y, t� and the initial
and boundary conditions on the boundaries of O
are known. The technique of alternating directional
implicit (ADI) method is used to solve this direct
problem.

3. Inverse problem

For the inverse problem, the thermal conductivity

k�x, y, t� is regarded as being unknown, but Eqs. (1)
quantities in are known. In addition, temperature read-
ings using infrared scanner taken at some appropriate

grid locations and time on the medium surface are also
considered available.

We assumed that the temperatures obtained from in-
frared scanner at the grid point are used to identify
k�x, y, t� in the inverse calculations. Let the tempera-

ture reading taken at these grid points over the time
period tf be denoted by Yi; j�Xi, Yj, t� � Yi; j�t�, i � 1
to I and j = 1 to I, where I represents the number of

grid in x and y directions. We note that the measured
temperature Yi, j�t� should contain measurement errors.
Then the inverse problem can be stated as follows:

by utilizing the above-mentioned measured tempera-
ture data Yi, j�t�, estimate the unknown k�x, y, t� over
the entire space and time domain.
Since all the measured temperatures are used to

compute the entire unknown function for one period
of time variation and no priori information is available
on the functional form of k�x, y, t�, therefore, the

method used here may be classi®ed as the function
estimation in the whole-domain [11] for the determi-
nation of the thermal conductivity in a non-homo-

geneous medium.
The solution of the present inverse problem is to be

obtained in such a way that the following functional is

minimized:

J
�
k�x, y, t�� � �tf

t�0

XI
i�1

XI
j�1

�
Ti, j�x i, yj, t�

ÿ Yi, j�x i, yj, t�
� 2

dt �2�

Here, Ti, j are the estimated temperatures on the plane

at the grid locations �x i, yj �: These quantities are deter-
mined from the solution of the direct problem given
previously by using an estimated k̂�x, y, t� for the exact

k�x, y, t�: Here the superscript `` ^ `` denotes the esti-
mated quantities.

4. Conjugate gradient method for minimization

The following iterative process based on the CGM
[5] is now used for the estimation of k�x, y, t� by mini-

mizing the above functional J�k�x, y, t��

k̂
n�1�x, y, t� � k̂

n�x, y, t� ÿ bnPn�x, y, t�
for n � 0, 1, 2, . . .

�3a�

where bn is the search step size in going from iteration

n to iteration n� 1, and Pn�x, y, t� is the direction of
descent (i.e., search direction) given by

Pn�x, y, t� � J 0n�x, y, t� � gnPnÿ1�x, y, t� �3b�

which is a conjugation of the gradient direction
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J 0n�x, y, t� at iteration n and the direction of descent
Pnÿ1�x, y, t� at iteration nÿ 1: The conjugate coef-

®cient is determined from

gn �

�L
x�0

�L
y�0

�tf
t�0
�J 0n � 2 dt dx dy�L

x�0

�L
y�0

�tf
t�0
�Jnÿ1 � 2 dt dx dy

with g0 � 0 �3c�

We note that when gn � 0 for any n, in Eq. (3b), the
direction of descent Pn�x, y, t� becomes the gradient
direction, i.e., the ``Steepest descent'' method is
obtained. The convergence of the above iterative pro-

cedure in minimizing the functional J is guaranteed
[12].
To perform the iterations according to Eqs. (3), we

need to compute the step size bn and the gradient of
the functional J 0n�x, y, t�: In order to develop ex-
pressions for the determination of these two quantities,

a ``sensitivity problem'' and an ``adjoint problem'' are
constructed as described below.

5. Sensitivity problem and search step size

The sensitivity problem is obtained from the original

direct problem de®ned by Eqs. (1) in the following
manner. It is assumed that when k�x, y, t� undergoes a
variation Dk�x, y, t�, T�x, y, t� is perturbed by

DT�x, y, t�: Then in the direct problem, replacing k by
k� Dk and T by T� DT, subtracting from the result-
ing expressions the direct problem and neglecting the

second-order terms, the following sensitivity problem
for the sensitivity function DT is obtained:

@

@x

�
k�x, y, t�@DT�x, y, t�

@x

�

� @

@y

�
k�x, y, t�@DT�x, y, t�

@y

�

� @

@x

�
Dk�x, y, t�@T�x, y, t�

@x

�

� @

@y

�
Dk�x, y, t�@T�x, y, t�

@y

�

� @DT�x, y, t�
@ t

in O

�4a�

ÿk�x, y, t�@DT�x, y, t�
@x

� Dk�x, y, t�@T�x, y, t�
@x

along x � 0

�4b�

ÿk�x, y, t�@DT�x, y, t�
@x

� Dk�x, y, t�@T�x, y, t�
@x

along x � L

�4c�

ÿk�x, y, t�@DT�x, y, t�
@y

� Dk�x, y, t�@T�x, y, t�
@y

along y � 0

�4d�

ÿk�x, y, t�@DT�x, y, t�
@y

� Dk�x, y, t�@T�x, y, t�
@y

along y � L

�4e�

DT�x, y, t� � 0 at t � 0 �4f�

The technique of ADI method is used to solve this sen-
sitivity problem.
The functional J�k̂n�1� for iteration n� 1 is obtained

by rewriting Eq. (2) as

J

�
k̂
n�1
�
�
�tf
t�0

XI
i�1

XI
j�1

h
Ti, j

�
k̂
n ÿ bnPn

�

ÿ Yi, j

i 2
dt �5a�

where we replaced k̂
n�1

by the expression given by Eq.
(3a). If temperature Ti, j�k̂

n ÿ bnPn� is linearized by a

Taylor expansion, Eq. (5a) takes the form

J

�
k̂
n�1
�
�
�tf
t�0

XI
i�1

XI
j�1

h
Ti, j

ÿ
k̂
n�ÿ bnDTi, j�Pn �

ÿ Yi, j

i 2
dt �5b�

where Ti, j�k̂
n� is the solution of the direct problem by

using estimate k̂
n�x, y, t� for exact k�x, y, t� at the lo-

cation �x i, yj �: The sensitivity function DTi, j�pn� is
taken as the solution of problem (4) at the grid pos-
itions �x i, yj � by letting Dk � Pn [5]. The search step

size bn is determined by minimizing the functional
given by Eq. (5b) with respect to bn: The following ex-
pression results:

bn �

�tf
t�0

XI
i�1

XI
j�1

ÿ
Ti, j ÿ Yi, j

�
DTi, j dt

�tf
t�0

XI
i�1

XI
j�1

ÿ
DTi, j

� 2
dt

�6�

C.-H. Huang, S.-C. Chin / Int. J. Heat Mass Transfer 43 (2000) 4061±40714064



6. Adjoint problem and gradient equation

To obtain the adjoint problem, Eq. (1a) is multiplied
by the Lagrange multiplier (or adjoint function)
l�x, y, t� and the resulting expression is integrated over

the correspondent time and space domains. Then the
result is added to the right-hand side of Eq. (2) to
yield the following expression for the functional

J�k�x, y, t��:

J
�
k�x, y, t�� � �tf

t�0

XI
i�1

XI
j�1

�
Ti, j ÿ Yi, j

� 2
dt

�
�L
x�0

�L
y�0

�tf
t�0

l�x, y, t�

�
(
@

@x

�
k�x, y, t�@T�x, y, t�

@x

�
� @

@y

�
k�x, y, t�@T�x, y, t�

@y

�
ÿ @T�x, y, t�

@ t

)
dt dx dy �7�

The variation DJ is obtained by perturbing k by Dk
and T by DT in Eq. (7), subtracting from the resulting
expression the original equation (7) and neglecting the

second-order terms. We thus deduce

DJ �
�L
x�0

�L
y�0

�tf
t�0

XI
i�1

XI
j�1

2�Tÿ Y�DTd�xÿ x i �d�y

ÿ yj � dt dx dy

�
�L
x�0

�L
y�0

�tf
t�0

l

(
@

@x

�
k�x, y, t�@DT�x, y, t�

@x

�

� @

@y

�
k�x, y, t�@DT�x, y, t�

@y

�

� @

@x

�
Dk�x, y, t�@T�x, y, t�

@x

�

� @

@y

�
Dk�x, y, t�@T�x, y, t�

@y

�

ÿ @DT�x, y, t�
@ t

)
dt dx dy �8�

where d��� is the Dirac delta function. In Eq. (8), the

integral terms containing space or time derivative are
integrated by parts; the initial and boundary con-
ditions of the sensitivity problem given by Eqs. (4b)±

(4d) are utilized. The vanishing of the integrands con-
taining DT leads to the following adjoint problem for
the determination of l�x, y, t�:

@

@x

�
k�x, y, t�@l�x, y, t�

@x

�

� @

@y

�
k�x, y, t�@l�x, y, t�

@y

�
�
XIÿ1
i�2

XIÿ1
j�2

2�T

ÿ Y�d�xÿ x i �d�yÿ yj � � @l�x, y, t�
@ t

� 0

in O

�9a�

ÿk�x, y, t�@l�x, y, t�
@x

� 2�Tÿ Y� along x � 0 �9b�

k�x, y, t�@l�x, y, t�
@x

� 2�Tÿ Y� along x � L �9c�

ÿk�x, y, t�@l�x, y, t�
@y

� 2�Tÿ Y� along y � 0 �9d�

k�x, y, t�@l�x, y, t�
@y

� 2�Tÿ Y� along y � L �9e�

l�x, y, t� � 0 at t � tf �9f�

The adjoint problem is di�erent from the standard in-
itial value problems in that the ®nal time conditions at
time t � tf is speci®ed instead of the customary initial
condition. However, this problem can be transformed

to an initial value problem by the transformation of
the time variables as t � tf ÿ t: Then the standard
technique of ADI can be used to solve the adjoint

problem.
Finally, the following integral term is left

DJ �
�L
x�0

�L
y�0

�tf
t�0
ÿ
�
@l�x, y, t�

@x

@T�x, y, t�
@x

� @l�x, y, t�
@y

@T�x, y, t�
@y

�
Dk�x, y, t� dt dx dy

�10a�

From Ref. [5], we know that

DJ �
�L
x�0

�L
y�0

�tf
t�0

J 0�x, y, t�Dk�x, y, t� dt dx dy �10b�

Then function J 0�x, y, t� is called a gradient of func-

tional. A comparison of Eqs. (10a) and (10b) leads to
the following expression for the gradient J 0�x, y, t� of
the functional J�k�x, y, t��:
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J 0�x, y, t� � ÿ
�
@l�x, y, t�

@x

@T�x, y, t�
@x

� @l�x, y, t�
@y

@T�x, y, t�
@y

�
�11�

We note that J 0�x, y, tf � is always equal to zero since
l�x, y, tf� � 0, therefore, if the ®nal time values of

k�x, y, tf� cannot be predicted before the inverse calcu-
lation, the estimated values of k�x, y, t� will deviate
from exact values near ®nal time condition [5]. This is

the case in the present study! However, if we let l�x, y,
tf � � l�x, y, tfÿDt�, where Dt denotes the time incre-
ment used in ®nite di�erence calculation, the singular-

ity at t � tf can be avoided in the present study and a
reliable inverse solution can be obtained [6±8].

7. Stopping criterion

If the problem contains no measurement errors, the

traditional check condition is speci®ed as

Jbk̂n�1�x, y, t�c < e �12�

where e is a small-speci®ed number. However, the
observed temperature data may contain measurement
errors. Therefore, we do not expect the functional

equation (2) to be equal to zero at the ®nal iteration
step. Following the experience of the authors [5±8], we
use the discrepancy principle as the stopping criterion,

i.e., we assume that the temperature residuals may be
approximated by

Ti, j ÿ Yi, j1s �13�

where s is the standard deviation of the measurements,
which is assumed to be a constant. The above assump-
tion was also made by Tikhonov [13] in order to ®nd

the optimal regularization parameter. Substituting Eq.
(13) into Eq. (2), the following expression is obtained
for e:

e � I 2s 2tf �14�

Then, the stopping criterion is given by Eq. (12) with e
determined from Eq. (14).

8. Computational procedure

The computational procedure for the solution of this
inverse problem may be summarized as follows:
Suppose k̂

n�x, y, t� is available at iteration n.

Step 1. Solve the direct problem given by Eq. (1)
for T�x, y, t�:
Step 2. Examine the stopping criterion given by Eq.

(12) with e given by Eq. (14). Continue if not satis-
®ed.

Step 3. Solve the adjoint problem given by Eq. (9)
for l�x, y, t�:
Step 4. Compute the gradient of the functional

J 0�x, y, t� from Eq. (11).
Step 5. Compute the conjugate coe�cient gn and
direction of descent Pn from Eqs. (3c) and (3b), re-

spectively.
Step 6. Set Dk�x, y, t� � Pn�x, y, t�, and solve the
sensitivity problem given by Eq. (4) for DT�x, y, t�:
Step 7. Compute the search step size bn from Eq.
(6).
Step 8. Compute the new estimation for k̂

n�1�x, y, t�
from Eq. (3a) and return to step 1.

9. Results and discussions

To demonstrate the validity of the present CGM in
predicting k�x, y, t� for a two-dimensional non-homo-

geneous material from the knowledge of transient tem-
perature recordings on the medium surface, we
consider two speci®c examples where a drastic change

of the thermal conductivity is considered.
The objective of this article is to show the accuracy

of the present approach in estimating k�x, y, t� with no
prior information on the functional form of the

unknown quantities, which is the so-called function
estimation.
In order to compare the results for situations in-

volving random measurement errors, we assume nor-
mally distributed uncorrelated errors with zero mean
and constant standard deviation. The simulated inexact

measurement data Y can be expressed as

Y � Yexact � os �15�
where Yexact is the solution of the direct problem with

an exact k�x, y, t�; s is the standard deviation of the
measurements; and o is a random variable that gener-
ated by subroutine DRNNOR of the IMSL [14] and

will be within ÿ2.576 to 2.576 for a 99% con®dence
bounds.
One of the advantages of using the CGM is that the

initial assumptions of the unknown quantities can be

chosen arbitrarily. In all the test cases considered here,
the initial assumptions of k�x, y, t� used to begin the
iteration are taken as k̂�x, y, t�initial � 0:1: Besides, the
side length of domain O is taken as L � 12; the space
increment is taken as Dx � Dy � 0:5 in the ®nite di�er-
ence calculations, therefore I = 25. The total measure-

ment time is chosen as tf � 10 and time increment is
chosen as Dt � 0:5: The boundary heat ¯uxes are
taken as q1 � 100, q2 � 60, q3 � 100 and q4 � 60; and
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measurement time step Dt is taken to be the same as
Dt; therefore, total of 12,500 discrete number of

k�x, y, t� are to be estimated simultaneously in the
present inverse calculations.
We now present two numerical experiments in deter-

mining k�x, y, t� or k�i, j, m� by the inverse analysis.
Here i and j represent the grid index of the space while
m denotes the grid index of time.

9.1. Numerical test case 1

A three-region non-homogeneous thermal conduc-

tivity k�i, j, m� is assumed to vary with the position
and time in the domain O as stated below:

1. For time 0 < tR3, the exact distributions for ther-

mal conductivity k�i, j, m� are shown in Fig. 2,
where the values of k in regions I, II and III are
assumed to be 6, 8 and 10, respectively.

2. For time 3 < tR6:5, the exact distributions for ther-

mal conductivity k�i, j, m� are shown in Fig. 3,
where the values of k in regions I, II and III are
assumed to be 10, 9 and 12, respectively.

3. For time 6:5 < tR10, the exact distributions for
thermal conductivity k�i, j, m� are shown in Fig. 4,
where the values of k in region I, II and III are

assumed to be 17, 16 and 14, respectively.

The inverse analysis is ®rst performed by assuming
exact measurements, s � 0, i.e., no measurement

errors. By setting the number of iteration equals to 70,
after about 5 min and 15 s CPU time at Pentium II-
350 MHz PC, the estimated thermal conductivity
k�i, j, m� can be obtained.

The estimated values of k�i, j, m� are in good agree-

ment with the exact values since the relative average
errors for the estimated temperatures and thermal con-
ductivity are ERR1 = 0.26% and ERR2 = 3.5%, re-

spectively, where the de®nitions for ERR1 and ERR2
are shown below:

ERR1 �%� �
X25
i�1

X25
j�1

X20
m�1

����T�i, j, m� ÿ Y�i, j, m�
Y�i, j, m�

����
� �25� 25� 20� � 100% �16�

Fig. 3. The exact image of thermal conductivity k�i, j, 6� for
test case 1 at t = 6.

Fig. 4. The exact image of thermal conductivity k�i, j, 9:5� for
test case 1 at t = 9.5.

Fig. 2. The exact image of thermal conductivity k�i, j, 2:5� for
test case 1 at t = 2.5.
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ERR2 �%� �
X25
i�1

X25
j�1

X20
m�1

����� k̂�i, j, m� ÿ kexact�i, j, m�
kexact�i, j, m�

�����
� �25� 25� 20� � 100% �17�

The estimated images for thermal conductivity at time

t = 2.5, 6 and 9.5 are shown in Figs. 5±7, respectively.
From these ®gures we learn that the tomography tech-
nique by applying the CGM in estimating the

unknown thermal conductivity in a non-homogeneous
medium is now complete.
Next, let us discuss the in¯uence of the measurement

errors on the inverse solutions. First, the measurement
error for the infrared scanner is taken as s � 0:35

(about 1% of the average measured temperature), then
error is increased to s � 1:05 (about 3% of the average

measured temperature). The inverse calculations are
then performed and the stopping criteria based on the
discrepancy principle is applied.

For the case when s � 0:35, after 50 iterations (CPU
time used at Pentium II-350 MHz PC is about 3 min
and 45 s), the inverse solutions are converged. The
relative average errors for the estimated temperatures

and thermal conductivity are calculated as ERR1 =
4.3% and ERR2 = 5.4%, respectively, and the esti-
mated images at time t =2.5, 6 and 9.5 are shown in

Figs. 8±10, respectively.
When s � 0:35, after 13 iterations (CPU time used

at Pentium II-350 MHz PC is about 48 s), the sol-

Fig. 5. The estimated image of thermal conductivity k�i, j, 2:5�
for test case 1 at t = 2.5 with s � 0:0:

Fig. 6. The estimated image of thermal conductivity k�i, j, 6�
for test case 1 at t = 9.5 with s � 0:0:

Fig. 7. The estimated image of thermal conductivity k�i, j, 9:5�
for test case 1 at t = 9.5 with s � 0:0:

Fig. 8. The estimated image of thermal conductivity k�i, j, 2:5�
for test case 1 at t = 2.5 with s � 0:35:
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utions for the estimated thermal conductivity are con-
verged. The relative average errors for the estimated

temperatures and thermal conductivity are calculated
as ERR1 = 11.6% and ERR2 = 10.1%, respectively.

9.2. Numerical test case 2

In the second test case, we assumed that the func-

tions of thermal conductivity are in a more compli-
cated form. They can be speci®ed as follows:

1. For time 0 < tR5, the exact distributions for ther-

mal conductivity k�i, j, m� in regions I, II and III are
given as:

I:

k�i, j, m� � 6� 0:1� �i� j�m� � sin�2� p�m=20�

II:

k�i, j, m� � 9� 0:1� �i� j�m� � sin�2� p�m=20�

III:

k�i, j, m� � 12� 0:1� �i� j�m� � sin�2� p

�m=20�

2. For time 5 < tR10, t the exact distributions for
thermal conductivity k�i, j, m� in regions I and II are

given as:

I:

k�i, j, m� � 11� 0:1� �i� j�m� � 5� sin�2� p

�m=20�

II:

k�i, j, m� � 14� 0:1� �i� j�m� � 5� sin�2� p

�m=20�

When assuming exact measurements, s � 0, (i.e., no
measurement errors), and setting the number of iter-

ation equals to 50. After about 4 min and 25 s CPU
time at Pentium II-350 MHz PC, the inverse solutions
in estimating the thermal conductivity k�i, j, m� can be

Fig. 9. The estimated image of thermal conductivity k�i, j, 6�
for test case 1 at t = 6 with s � 0:35:

Fig. 10. The estimated image of thermal conductivity

k�i, j, 9:5� for test case 1 at t = 9.5 with s � 0:35:
Fig. 11. The exact image of thermal conductivity k�i, j, 4:5�
for test case 2 at t = 4.5.

C.-H. Huang, S.-C. Chin / Int. J. Heat Mass Transfer 43 (2000) 4061±4071 4069



obtained. The relative average errors for the estimated
temperatures and thermal conductivity are
ERR1=1.6% and ERR2=4.7%, respectively. This

implies that the estimated values of k�i, j, m� are also
in good agreement with the exact values in this test
case.
The exact images for the thermal conductivity at

time t = 4.5 and 9.5 are shown in Figs. 11 and 12, re-
spectively, while the estimated images for the same
time are shown in Figs. 13 and 14, respectively. From

these ®gures we learn that the CGM can also be
applied in this thermal conductivity tomography esti-
mation.

Next, similar to the previous procedure, we will dis-

cuss the in¯uence of the measurement errors on the
inverse solutions. First, the measurement error for the

infrared scanner is taken as s � 0:31 (about 1% of the
average measured temperature), then error is increased
to s � 1:02 (about 3% of the average measured tem-

perature). The inverse calculations are then performed
and the stopping criteria based on the discrepancy
principle is applied.

For the case when s � 0:31, after 41 iterations
(about 3 min and 37 s CPU time is used), the inverse
solutions are converged. The relative average errors for

the estimated temperatures and thermal conductivity
are calculated as ERR1=3.7% and ERR2 = 6.1%,
respectively.
When s � 1:02, after 16 iterations (about 1 min and

25 s CPU time is used), the solutions for the estimated
thermal conductivity are converged. The relative aver-
age errors for the estimated temperatures and thermal

conductivity are calculated as ERR1 = 12.5% and
ERR2 = 11.0%, respectively.
By using 1% and 3% measurement errors in these

two test cases, one could estimate the thermal conduc-
tivity with average relative error with the order of
about 5% and 10%, respectively. This represents that

the measurement errors did not amplify the errors of
estimated thermal conductivity and therefore the
present technique provides a con®dence estimation in
determining 12,500 discrete number, of k�i, j, m� simu-

lataneously.
From the above numerical test cases 1 and 2, we

concluded that the CGM can be applied successfully in

the function estimation for predicting the non-homo-
geneous thermal conductivity with very fast speed of
convergence!

Fig. 12. The exact image of thermal conductivity k�i, j, 9:5�
for test case 2 at t = 9.5.

Fig. 13. The estimated image of thermal conductivity

k�i, j, 4:5� for test case 2 at t =4.5 with s � 0:0:
Fig. 14. The estimated image of thermal conductivity

k�i, j, 9:5� for test case 2 at t = 9.5 with s � 0:0:

C.-H. Huang, S.-C. Chin / Int. J. Heat Mass Transfer 43 (2000) 4061±40714070



10. Conclusions

The CGM with adjoint equation was successfuly
applied for the solution of the inverse problem to
determine the non-homogeneous thermal conductivity.

Several test cases involving di�erent functional forms
of non-homogeneous thermal conductivity and
measurement errors were considered. The results show

that the CGM does not require a priori information
for the functional form of the unknown quantities and
needs very short CPU time at Pentium II-350 MHz PC

to perform the inverse calculations.
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